KHARAGPUR COLLEGE <u>DEPARTMENT OF MATHEMATICS</u>

STUDY MATERIALS

SUBJECT: MATHEMATICS HONOURS

CLASS: B. Sc. Hons.

SEMESTER: 1 ST

PAPER: C2T

UNITS: II [Sets and Integers]

& III [System of Linear Equations]

Dr. Sangita Chakraborty

Associate Professor

Department of Mathematics

Kharagpur College

Email:

sangita@kharagpurcollege.ac.in

INTEGERS:

The set \mathbb{Z} consists of all integers $0, \pm 1, \pm 2, \pm 3, \dots$, called the set of all integers.

The set \mathbb{N} consists of all positive integers 1, 2, 3, ..., called the *set of all natural numbers*.

Therefore, $\mathbb{N} \subset \mathbb{Z}$.

PRINCIPLE OF MATHEMATICAL INDUCTION:

Statement \rightarrow Let $S \subseteq \mathbb{N}$ with the properties –

- (i) $1 \in S$,
- (ii) $n \in S \implies n+1 \in S$. Then $S = \mathbb{N}$.

WELL ORDERING PROPERTY OF \mathbb{N} :

Statement \rightarrow Every non-empty subset of $\mathbb N$ contains a least element.

 \implies If $S \subseteq \mathbb{N}$ and S is non-empty, then \exists some $a \in S$ such that $a \leq n$, $\forall n \in S$.

Proof \rightarrow Let us assume $S \subseteq \mathbb{N}$ and S is non-empty such that S has no least element.

We construct $T \subseteq \mathbb{N}$ such that $T = \{x \in \mathbb{N} : x < n, \forall n \in S\}$.

 $S \cap T = \phi$.

Now $1 \notin S$; otherwise 1 would be the least element of S.

Hence $\forall n \in S, n > 1$ and so $1 \in T$.

Let $m \in T$. $\Rightarrow m < n, \forall n \in S$.

If $m+1 \in S$, then m+1 (the first element of S) would be the least element of S.

Which is a contradiction to our assumption that S has no least element.

 $m+1 \notin S$ and so m+1 < n, $\forall n \in S \implies m+1 \in T$.

Thus we get: (i) $1 \in T$, (ii) $m \in T \implies m + 1 \in T$.

Hence, by the principle of mathematical induction $T = \mathbb{N}$.

But $S \cap T = \phi$. So $S = \phi$, which is a contradiction.

 \therefore S must have a least element.

PRINCIPLE OF MATHEMATICAL INDUCTION:

Statement \rightarrow Let $S \subseteq \mathbb{N}$ with the properties –

- (i) $1 \in S$,
- (ii) $n \in S \implies n+1 \in S$. Then $S = \mathbb{N}$.

Proof \longrightarrow Let $S, T \subseteq \mathbb{N}$ such that $S \cap T = \phi$ and $S \cup T = \mathbb{N}$.

Let us assume that T is non-empty. Then by well ordering property

T contains a least element, say m.

Since $1 \in S$, m > 1. $\Rightarrow m - 1 \in \mathbb{N}$.

But $m-1 \notin T$, since m is the least element in T.

 $\Rightarrow m-1 \in S . \Rightarrow (m-1)+1 \in S$, i.e., $m \in S$, which is a contradiction.

Hence, $T = \phi : \Longrightarrow S = \mathbb{N}$.

DIVISION ALGORITHM:

Statement \rightarrow Given two integers a, b, with b > 0, there exist unique integers q, r such that a = b. q + r, where $0 \le r < b$.

[Note: q is called the quotient and r is called the remainder in the division of a by b.]

Proof \longrightarrow Let us consider $S = \{a - b : x : x \in \mathbb{Z}, a - b : x \ge 0\}$. So $S \subseteq \mathbb{Z}$.

To show first: *S* is non-empty.

Since $b > 0 \implies b \ge 1 \implies |a| \cdot b \ge |a| \implies a + |a| \cdot b \ge a + |a| \ge 0$.

 $\Rightarrow a - b.(-|a|) \in S. \Rightarrow S$ is non-empty.

Since *S* is a non-empty set of non-negative integers,

the least element r (say) of S can be

either (i) 0,

or (ii) a smallest positive integer by the well ordering property of the set \mathbb{N} . Hence \exists an $q \in \mathbb{Z}$ such that a - b. q = r, $r \ge 0$.

We proclaim that: r < b.

Because $r \ge b \implies a - (q+1)$. $b = (a-q,b) - b = r - b \ge 0$.

Also a - (q + 1).b = (a - q.b) - b = r - b < r.

Now $a - (q + 1) \cdot b \in S$, $0 \le a - (q + 1) \cdot b < r$.

 \Rightarrow r cannot be the least element of S, a contradiction.

Hence $a = b \cdot q + r$ where $0 \le r < b$.

Uniqueness of q & r:

Let us suppose that $a = b \cdot q + r$, $a = b \cdot q_1 + r_1$ where $0 \le r$, $r_1 < b$;

 $q, q_1, r, r_1 \in \mathbb{Z}$.

$$\Rightarrow b. |q - q_1| = |r_1 - r|, -b < r_1 - r < b.$$

$$\Rightarrow$$
 $b. |q - q_1| = |r_1 - r| < b.$

$$\Rightarrow |q - q_1| < 1 . \Rightarrow q = q_1 \text{ , since } q, q_1 \in \mathbb{Z} .$$
$$\Rightarrow r = r_1 .$$

This completes the proof.

General Version of DIVISION ALGORITHM:

Statement \rightarrow Given two integers a, b, with $b \neq 0$, there exist unique integers q, r such that a = b. q + r, where $0 \leq r < |b|$.

Previously we have proved Division Algorithm for the case when b > 0. $Proof \rightarrow$ So now we consider the case when b < 0. Then |b| > 0.

By the previous proof, \exists unique q_1 , $r \in \mathbb{Z}$ such that

$$a = |b|. q_1 + r, \ 0 \le r < |b|$$

= $-b. q_1 + r$, since $b < 0$.

$$\therefore a = b.q + r$$
, where $q = -q_1$.

This completes the proof.

Examples:

1. Let
$$a = -15$$
, 4, 21; $b = 6$.
 $-15 = 6$. $(-3) + 3 \implies q = -3$, $r = 3$;
 $4 = 6$. $0 + 4 \implies q = 0$, $r = 4$;

Let
$$a = -15$$
, 4, 21; $b = 6$.
 $-15 = 6$. $(-3) + 3 \implies q = -3$, $r = 3$;
 $4 = 6$. $0 + 4 \implies q = 0$, $r = 4$;
21 6. $3 + 3 \implies q = 3$, $r = 3$.
22. Let $a = -15$, 4, 21; $b = -6$.
 $-15 = (-6)$. $(3) + 3 \implies q = 3$, $r = 3$
 $4 = (-6)$. $0 + 4 \implies q = 0$, $r = 4$
 $21 = (-6)$. $(-3) + 3 \implies q = -3$, $r = 3$.

REMARK: When the remainder r = 0 in the Division algorithm, we have the following: **Definition 1.** An integer a is said to be <u>divisible</u> by an integer $b \neq 0$ if \exists some $c \in \mathbb{Z}$ s.t. a = b.c and we write b|a.

Properties:

- 1. $b|a \Rightarrow (-b)|a$, because $a = b.c \Rightarrow a = (-b).(-c)$,
- 2. b|a and $a|c \Rightarrow b|c$,
- 3. b|a and a|b if and only if $b = \pm a$,
- 4. b|a and $b|c \Rightarrow b|(a.x + c.y)$ for any $x, y \in \mathbb{Z}$. Because $b|a \implies a = b.m$ for some $m \in \mathbb{Z}$; $b|c \implies c = b.n$ for some $n \in \mathbb{Z}$. $\therefore a.x + c.y = b.m.x + b.n.y = b.(m.x + n.y) \implies b|(a.x + c.y).$

Definition 2. An integer d is said to be a common divisor of the integers a and b if d|aand d|b.

Properties:

- 1. 1 is a *common divisor* of an arbitrary pair of integers a and b;
- 2. If both a = 0 and b = 0 then **each** integer a common divisor of a and b;
- 3. If at least one of a and b is non-zero then \exists only a *finite* number of positive common divisors.

Definition 3. If $a, b \in \mathbb{Z}$, not both zero, the **greatest common divisor** of a and b, denoted by gcd(a, b) is the *positive integer d* satisfying

- i. d|a and d|b; (d as a common divisor)
- ii. If for some $c \in Z^+$, $c \mid a$ and $c \mid b \Rightarrow c \mid d$. (d is the greatest common divisor)

NOTE: gcd(a, -b) = gcd(-a, b) = gcd(-a, -b) = gcd(a, b). (follows from definition) Example: Let a = -20, b = -30. The common positive divisors of a and b are: 1, 2, 5, 10. $\therefore gcd(-a, -b) = gcd(-20, -30) = 10$.

Definition 4. $a, b \in \mathbb{Z}$, not both zero, are said to be **prime to each other** or **relatively prime** if gcd(a, b) = 1.

Properties of *gcd***:**

1. Theorem: If $a, b \in \mathbb{Z}$, not both zero, then $\exists u, v \in \mathbb{Z}$ s.t. $gcd(a, b) = a \cdot u + b \cdot v$.

Proof \rightarrow Let us consider $S = \{a.x + b.y : x, y \in \mathbb{Z}, a.x + b.y > 0\}$. So $S \subseteq Z^+$.

To show first: *S* is non-empty.

Since $a, b \in \mathbb{Z}$, not both zero, let $a \neq 0$ then |a| > 0.

$$\Rightarrow$$
 $|a| = a.x + b.0 \in S$, where $x = 1$, $y = 0$ if $a > 0$, and $x = -1$, $y = 0$ if $a < 0$.

 \implies *S* is non-empty.

Since S is a non-empty set of positive integers, by the well ordering property of the set \mathbb{N} , S contains a least element d (say).

Then $d = a.u + b.v : u, v \in \mathbb{Z}$.

By division algorithm, $a = d \cdot q + r$ where $q, r \in \mathbb{Z}$, $0 \le r < d$.

$$\Rightarrow r = a - d. q = a - (a.u + b.v). q = a.(1 - u.q) + b.(-v.q).$$

 \Rightarrow if r > 0 then $r \in S$.

Again r < d and d being the least element in $S : \Rightarrow r \notin S$.

Consequently, r = 0. $\Rightarrow a = d.q$. $\Rightarrow d|a$.

By similar arguments we can show that d|b. So d|a and d|b.

Next to show: d = gcd(a, b).

Let
$$c|a$$
 and $c|b \Rightarrow c|(a.u + b.v) \Rightarrow c|d \Rightarrow d = gcd(a,b)$.

This proves the theorem.

NOTE: (i) gcd(a, b) can always be expressed as a linear combination of a and b.

- (ii) d = gcd(a, b) is the least positive value of a.x + b.y; $x, y \in \mathbb{Z}$.
- (iii) d = a.u + b.v = a.(u + k.b) + b.(v k.a), where $k \in \mathbb{Z}$.

So integers x and y are not unique for which the integer a. x + b. y is least positive.

- 2. Theorem: If $a, b \in \mathbb{Z}$, not both zero, and $k \in \mathbb{Z}^+$ then gcd(ka, kb) = k. gcd(a, b).
 - **Proof** \rightarrow Let d = gcd(a, b). Then $\exists u, v \in \mathbb{Z}$ s.t. d = a.u + b.v; d|a and d|b. Now $d|a \Rightarrow k.d|k.a$ and $d|b \Rightarrow k.d|k.b$.

 $\Rightarrow k.d$ is a common divisor of k.a and k.b.

Let c be any other *common divisor* of k.a and k.b.

 $\therefore c | k.a \implies k.a = m.c$ and $c | k.b \implies k.b = n.c$; $m, n \in \mathbb{Z}$.

Now k.d = k.(a.u + b.v) = m.c.u + n.c.v = (m.u + n.v).c

 $\Rightarrow c \mid k.d$.

Consequently, k.d = gcd(ka, kb). i.e., gcd(ka, kb) = k.gcd(a, b).

- 3. Theorem: If $a, b \in \mathbb{Z}$, not both zero, then gcd(a, b) = 1 if and only if $\exists u, v \in \mathbb{Z}$ s.t. 1 = a.u + b.v.
 - Proof → Let gcd(a,b) = 1. Then $\exists u,v \in \mathbb{Z}$ s.t. 1 = a.u + b.v. Conversely, let $\exists u,v \in \mathbb{Z}$ s.t. 1 = a.u + b.v and let d = gcd(a,b). Since d|a and d|b then d|(a.x + b.y); $\forall x,y \in \mathbb{Z}$. $\Rightarrow d|1 \Rightarrow d = 1$, since $d \in \mathbb{Z}^+$. $\Rightarrow gcd(a,b) = 1$.
- **4.** Theorem: If d = gcd(a, b), then $gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.
 - **Proof** \longrightarrow Let d = gcd(a, b). Then d|a and d|b.

 $d|a \Longrightarrow \exists m \in \mathbb{Z} \quad s.t. \ a = m.d \ ; d|b \Longrightarrow \exists n \in \mathbb{Z} \quad s.t. \ b = n.d \ .$

Now $\frac{a}{d} = m$, $\frac{b}{d} = n$; so $\frac{a}{d}$ and $\frac{b}{d}$ are integers.

Since d = gcd(a, b) then $\exists u, v \in \mathbb{Z}$ s.t. d = a.u + b.v.

$$\Rightarrow 1 = \left(\frac{a}{d}\right) \cdot u + \left(\frac{b}{d}\right) \cdot v \quad \Rightarrow \gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$$

- 5. Theorem: If a|b.c and gcd(a,b) = 1, then a|c.
 - $\begin{array}{ll} \textit{Proof} \longrightarrow \ a | b. \, c \Longrightarrow \exists \ k \in \mathbb{Z} \quad \textit{s.t.} \quad b. \, c = k. \, a \\ gcd(a,b) = 1 \implies \exists \ u,v \in \mathbb{Z} \quad \textit{s.t.} \quad 1 = a. \, u + b. \, v \ . \\ \Longrightarrow c = a. \, u. \, c + b. \, v. \, c \implies c = a. \, u. \, c + k. \, a. \, v = (u. \, c + v. \, k). \, a \ . \\ \Longrightarrow a | c \ . \ [\text{Since} \ u. \, c + v. \, k \in \mathbb{Z} \] \end{array}$
- **6.** Theorem: If a|c and b|c with gcd(a,b) = 1, then a.b|c.
 - **Proof** → $a|c \Rightarrow \exists m \in \mathbb{Z}$ s.t. c = m.a; $b|c \Rightarrow \exists n \in \mathbb{Z}$ s.t. c = n.b $gcd(a,b) = 1 \Rightarrow \exists u,v \in \mathbb{Z}$ s.t. $1 = a.u + b.v \Rightarrow c = a.u.c + b.v.c$ $\Rightarrow c = a.u.n.b + b.v.m.a = a.b.(u.n + v.m)$ $\Rightarrow a.b|c$. [Since $u.n + v.m \in \mathbb{Z}$]
- 7. Theorem: If gcd(a, b) = 1 and gcd(a, c) = 1 then gcd(a, b, c) = 1.
 - $\operatorname{\textit{Proof}} \longrightarrow \operatorname{\textit{gcd}}(a,b) = 1 \implies \exists \ u,v \in \mathbb{Z} \ \text{\textit{s.t.}} \ 1 = a.u + b.v \ \ldots (i)$ $\operatorname{\textit{gcd}}(a,c) = 1 \implies \exists \ p,q \in \mathbb{Z} \ \text{\textit{s.t.}} \ 1 = a.p + c.q \ \ldots (ii)$

```
Multiplying (i) & (ii) we get, 1 = (a.u + b.v).(a.p + c.q).

\Rightarrow 1 = a^2.u.p + a.c.u.q + a.b.v.p + b.c.v.q

= a.(a.u.p + c.u.q + b.v.p) + b.c.(v.q)

\Rightarrow gcd(a, b.c) = 1. [Since (a.u.p + c.u.q + b.v.p), v.q \in \mathbb{Z}]
```